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Electromagnetic radiation recoil 

M A Rotenberg 
Division of Science, University of Wisconsin-Parkside, Kenosha, Wisconsin 53 140, USA 

Received 23 November 1976 

Abstract. Electromagnetic waves from a finite oscillating linear cohesive distribution of 
electric charge are investigated by a double-parameter approximation method applied to 
the Einstein-Maxwell equations of general relativity. In the metric representing the 
distribution, gravitational dipole terms (proportional to time) appear which indicate that the 
source recoils owing to the linear momentum carried away from the source by the waves. 

1. Introduction 

It was shown by Rotenberg (1966) that an oscillating electric dipole emitting elec- 
tromagnetic waves suffers a permanent loss of mass, on account of the energy of 
radiation transmitted from the source as calculated by means of the electromagnetic 
energy tensor. In a later work (Rotenberg 1975), this result was extended for any 
isolated cohesive source of electromagnetic waves; in that article it was also shown that 
the source, if rotating, undergoes steady diminution of angular momentum. The object 
of the present paper is to establish that a finite oscillating linear cohesive distribution of 
electric charge generally recoils away to infinity (as does a similar distribution of mass: 
see Bonnor and Rotenberg 1966), and that this is due to the linear momentum of 
radiation transmitted from the source as calculated via the electromagnetic energy 
tensor. To achieve this we shall use a double-parameter approximation method 
presented in 0 4, similar in form to that invented by Bonnor (Bonnor 1959, Bonnor and 
Rotenberg 1966) and appearing in the above mentioned work (Rotenberg 1966). As in 
the latter paper, the approximation method will be applied to the metric tensor and to 
the Einstein-Maxwell equationst 

for free space (Eddington 1924, 5073 and 77), in which &, 6 k  and Eik are the 
electromagnetic 4-potential, 4 x 4-field and energy tensors, respectively. To reduce 
calculations, coordinates of the Bondi metric (see 0 5) will be utilized to carry out this 
method. 

t In this paper, Latin indices run from 1 to 4 and Greek indices run from 1 to 3; the summation convention 
applies to both types of indices. Comma subscripts denote partial differentiation and semicolon subscripts 
indicate covariant differentiation. 
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976 M A  Rotenberg 

The plan of the paper is as follows. After a further brief description of the linear 
source in § 2, the external multipole wave solution for q5i of the linearized Einstein- 
Maxwell equations is obtained in § 3 for outgoing electromagnetic waves from the 
linear source; this solution corresponds to (pseudo-) Galilean coordinates, to be 
referred to as xi  = (x ,  y, z, t )  = (xa, t), with origin 0. In 0 4, the double-parameter 
approximation method is introduced, and the metric invented by Bondi (1960) is 
presented in § 5 ,  where, in addition, the e)tternal multipole wave solution in the 
coordinates of this metric is deduced from the one of 0 3 in Galilean coordinates. The 
multipole wave solution in the Bondi metric is needed in § 6 to calculate the elec- 
tromagnetic energy tensor in this metric and the total linear momentum transported by 
the waves from their linear source. Finally, in § 7, gravitational dipole terms (propor- 
tional to the time t) are found in the solution of the approximate Einstein-Maxwell 
equations and are shown to lead to the following result. The source generally 
undergoes a secular change in linear momentum which is equal and opposite to the 
linear momentum carried away from the source as radiation; in this case the source 
recoils off to infinity. The more complicated calculations are relegated to the appen- 
dices. 

2. 'Ibe electromagnetic source 

For choosing a source of electromagnetic waves we shall consider a linear coherent 
distribution of electric charge of finite length along the axis Oz of a (pseudo-) 
rectangular Cartesian coordinate system, in which the origin 0 coincides with the centre 
of mass of the distribution?. sThe source oscillates arbitrarily but smoothly during a 
finite period tl  S t S t2 so that I(?), the sth moment of charge at time t of the source about 
0, is an arbitrary bounded function with unique derivatives of all orders in the interval 
tl S t d f2  and is constant outside this interval. 

In terms of the retarded time U = t - r used later as the time-like coordinate for the 
Bondi metric, the period of motion will be referred to as u1 c U c u2. 

3. "be outgoing multipole wave solution of the linearized Einstein-Maxwell 
equations 

For c$~ representing any outgoing electromagnetic wave field, we present below, after 
introducing convenient notation, the external multipole wave solution of the linearized 
form of the second pair of equations (1.1) or of 

F'";, = 4 ~ 5 '  

Ji being the 4-current density of the source of the field; the solution, expressed in 
Galilean coordinates xi  = (xu, t), is derived in appendix 1. We then apply this solution to 
the special system of 0 2. 

Let e be the total charge of the source of the field, so that 

e = J4 dxl dx2 dxj (3.2) 

t It will be assumed that distance, time and mass retain their Newtonian significance in the linear approxima- 
tion to the Einstein-Maxwell equations. 
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where V is any space volume including the source; and let a be a constant having the 
dimension of length and characterizing the extent of the source by representing, for 
example, the time-averaged radius of gyration of the source. Let 

(3.3) 

represent the moments at time f of the 4-current density Ji for the source about the 
coordinate planes x, = 0; these moments must therefore satisfy the conservation law 

def 
77 abJa,b = 0 vik = v i k  = diag(-1, -1, -I, +I) (3.4) 

for Ji. Then introduce the specific moments, unaffected by change of units for e or a, as 

def 
Finally, let r = ( x ~ ~ ) ” ~  be the (pseudo-) radius vector OP of the field point P with 
(pseudo-) spherical polar coordinates (r,  8,4) and write 

def 
n, = x , / r  = (sin e cos 4, sin e sin 4, cos e). (3.6) 

In the above notation, the exterior multipole wave solution (for outgoing waves) of 
the linear approximation to equations (3.1) is (appendix 1) 

4, =e{ur-’h, +a2n,(r-1hh:,+r-2h,:u) 

+a 3[$-1 nun$ :up + 4(3nun, - S,)(r-’h h + r -3  h , + O(a ‘)} 
44 = e{r-1+an,(r-1hk,,+r-2h4:u) 

(3.7) 
+a ’[[tr - nun, h + $( 3 nun, - Sup)( r-2 h k:, + r -3 h 4:u,)] 

+a 3 1  [6 r -1 n,npn& Eupr + jr-’n, (2npn, - 8,) h 

+$n,(5n,nT - 3S,)(r-3hk,,+ r-4h4:u,)] + O(a4)}; 

def 
here hi:up,,, are to be evaluated at (pseudo-) retarded time U = t - r and a prime denotes 
differentiation with respect to the argument U. 

In the solution (3.7) the 2’-ple waue (s = 0, 1,2,  . . .) is the part involving eas ;  only 
the monopole contribution and the dipole, quadrupole and octupole wave contribu- 
tions have been explicitly shown in this multipole wave solution, as these are sufficient 
to obtain the results of 0 7. 

To deduce from equations (3.7) the particular form of the multipole wave solution 
for the linear emitter in 0 2, we proceed in the following way. For this source, we now 
consider the 4-current density Ji as a linear density Ji(z, t) with 
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In the notations (3.3) and (3.5) we now have 

(3.9) 

(3.10) 

and 

h 4 : 3  = h 4 : 3 3 =  h 4 : 3 3 3 = i  (3.1 1) 

in which 
s def def OD 

k = e-'a-"i i(t) = [ zSJ4(z,t)dz (s =0, 1,2, .  . .) (3.12) 
J-00 

1 being, as in 0 2, the sth moment of the charge of the linear source about the origin 0. 
The conservation equation (3.4) now reads 

J3,3 = J4,4 (3.13) 

owing to equations (3.8). Multiplying this byz"+' and integrating along Ot between the 
limits z = f m  we have 

so that 

(3.14) 

In the notations (3.10) and (3.12) this yields 

h3 = -k h3:3 = -$I@ h3:33 = -3' (3.15) 

where a prime indicates differentiation with respect to the argument t. 
Using equations (3.8) in the first of equations (A. 1) of appendix 1 and using equations 

(3.6), (3.9), (3.11) and (3.15) in equations (3.7) lead to the following exterior multipole 
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wave solution for the linear emitter in Ei 2: 

(3.16) 

k are to be calculated at retarded time U, and a prime means differentiation with respect 
to U. 

4. Tbe doable-parameter appronlmrtfon method 

We shall suppose that the metric tensor gik and the electromagnetic energy tensor Eik 
representing the external electromagnetic field can be expanded as convergent double- 
series in ascending powers of the parameters e and a introduced in 6 3, in the following 
manner: 

p = 2  s = o  
(4.1) 

(00) 
with gL and involving the coordinates x i  of the system employed and gik referring to 
flat space-time (see Rotenberg 1975). The contravariant metric tensor g ik  will then 
have a similar expansion, namely 

(4.3) 

with g' involving the coordinates x i  of the system employed and (?2 g referring to flat 
space-time. 

The reason for commencing the summation with respect to p in each of the 
equations (4.1H4.3) from p = 2 ,  rather than from p =  1, is as follows. Using the 
expansions (4.1) and (4.3) for gik  and gik along with equations (3.7) and the fourth of 
equations (1.1) in the second of equations (1.1) will give rise to the expansion (4.2) for 
Eik. In this expansion, the summation with respect to p starts with p = 2, and it can 
easily be seen that this would remain the case even if the range of summation in the 
expansions (4.1) and (4.3) for gik and gik were extended to include p = 1. So we may as 
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well allow the summation with respect to p for gik and gik  to begin with p = 2 as in the 
expansion for Ejk, since the metric depends, to some extent, on the electromagnetic field 
represented by Eik. 

The double-series expansions (4.1) and (4.2) will now constitute the double- 
parameter approximation method for investigating the effect of electromagnetic waves 
on the linear momentum of their source. Inserting these expansions in the first of 
equations (1.1) and comparing the coefficients of ePaS on both sides for each given pair 
p ,  s = 0, 1,2, . . . , we obtain ten second-order differential equations of the form 

( 2 s q  a p  - 1 O s r a s )  (4.4) 

henceforth referred to as the (ps) approximation. The left-hand sides, cPIm, are linear in 
@s ) (qr )  
g i k  and their derivatives; the quantities 4; on the right-hand sides are non-linear in gik 
and their derivatives, known from earlier approximations. Thus, apart from the 
expressions involving Elm, the (2s) approximations contain only terms linear in gi) and 
their derivatives; the non-linear qlm are absent from the (2s) approximations. These 
(2s) approximations (s = 0, 1,2,3) are the only ones considered in this paper and 
calculated for the linear source in 0 2 .  Indeed, it is in the (23) approximation that there 
first appear gravitational dipole terms? which reveal that the linear source undergoes a 
generally permanent change in linear momentum equal and opposite to the linear 
momentum removed from the source as radiation. Our object, therefore, is to derive 
appropriate solutions of the (2s) approlfimations (s = 0, 1,2,3). 

Finally, the solution of the (ps) approximation will be simply referred to as the (ps) 
solution, represented by the gik  satisfying equations (4.4). 

(2s) 

(2s) 

@s) 

5. "he Bondi metric 

To avoid excessive calculation in solving the leading (2s) approximations (especially the 
(22) and (23) ones) for the special axi-symmetric source in 0 2 ,  we shall use the 
axi-symmetric metric of Bondi (1960), exhibited here in the form 

ds'=-r'(B dO2+Csin2 8 d4')+D du2+2Fdr d u + 2 G r  d8 du C =  B-' (5.1) 

(as in Bonnor and Rotenberg 1966, Rotenberg 1966, Hunter and Rotenberg 1969, 
Rotenberg 1971); in this, B, C, D, F and G are functions of r, 8 and U. 

In the coordinates of the Bondi metric, flat space-time is represented by 

ds2=-r2(d9'+sinZ8 d4')+du2+2drdu (5.2) 

and the exterior Nordstrom solution assumes the form 

ds2 = -r2(d02 +sin2 8 d4') + (1 - 2mr-I + 4 ~  e2r-') du2 + 2 dr du (5.3) 

(Rotenberg 1971), m being the mass of the central spherically symmetric body with 
centre the origin. 

t For U > u2, these terms are linear in U and take the form r-'cu or rM2su with numerical coeffcients: see 
appendix 3. 
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The coefficients of the Bondi metric (5.1) may be expanded in forms similar to the 
expansion (4.1); thus 

c o c o  

p = 2 s = o  
-r-2gZ2 = B = 1 + 1 c e p a s % )  

-r cosec eg33= C =  I +  1 1 ePas C 
m m @s) -2 2 

p = 2 s = o  

( p s )  ( p s )  @s, @3) @s) @s ) 
Here, B , C, D , F and G are functions of (r ,  8, U), and C (with p ,  s given) is related 
to b (2  s q G p ,  0 r 6 s) by the second of equations (5.1). The isolated terms 1 on the 
extreme right of equations (5.4) form the flat space-time metric (5.2), in which the 

( I )  

(00) following are the non-zero components gik 

(00) 
The corresponding non-zero components g ’& are 

The notation (5.4) will be employed in 4 7 .  
For +i corresponding to the linear source in 0 2, we now obtain the exterior 

multipole wave solution (of the linear approximation to the second pair of equations 
(1 .1) )  in coordinates of the Bondi metric. To do this we apply the coordinate 
transformation 

y = r sin 8 sin 4 z = r cos e t = U + r  (5.7) x = r sin 8 cos 4 
to equations (3.16); the result is 

1 2 2 
= e{r-’ + ar-‘ck + a’[r-’(b -s’)k’ + r-3(1 - $s’)k] 

+a3[r-’(-:c +ic3)&+ r-3(-4c + 2c3)L’+r-4(+ +;&I + 0(u4)} 

1 42 = e{ask’+ba2sc(1rr+r-11‘) 
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a prime attached to k denoting differentiation with respect to the argument U .  This 
solution will be required in the next section. 

6. 'Lbe electromagnetic energy tensor and the flux of linear momentum 

To determine, for the linear source in 0 2 ,  the components Eik of the electromagnetic 
energy tensor in the Bondi metric, we insert equations (5.8) in the fourth of equations 
(1 .  l), use the result and equations (4.3) and (5.6) in the second of equations (1. l ) ,  and 
then use equations (4.1) and (5.5). After lengthy but straightforward calculation we 
find 

(20) ( 2 1 )  (22) (23) 
Eik = &Eik + aEik + u2Eik + a3Eik + O(a4)] + O(e3) (6.1) 

(20) ( 2 1 )  
where the non-zero Eik and Eik are given by 

(20) -2 -2(20) (20) (20) - -4 

( 2 1 )  -2 - 2 ( 2 1 )  (21) ( 2 1 )  

r -2E22=r  s E33= E44= E14-21 (6.2) 

( 2 1 )  (6.3) 
r-2E22 = r s E33 = E44 = E14 = 2 ~ ( r - ~ 1 '  + r - 5 k )  

( 2 1 )  
1 - 1 ~ ~ ~  = - r -ss l  1 - 1 ~ 2 4  = s(r-3k'+r-413 

(22) 
where the non-zero (10) x (12 )  contributions to Eik are given by? 

( 2 2 )  (22) (22) (22) 
r-'E22 = r-2s-2E33 = E44 = e14 = (1 -$s')(r"k''+ 3 r - 5 k  + 3r-61) 

(22) 
where the non-zero (1 1) x (1 1 )  contributions to Eik are given by 

E (22) - -6s2k2 
1 1 - 1  

(22) 
r-2E22 = r-4(-s2hk'+2c2k'2) + ( 2 - ~ ~ ~ ) ( 2 1 - ~ 1 1 ' + 1 - ~ 1 ~ )  

r-2s-2E33 = r - 4 ( ~ 2 k k f  + 2c2kr2) +(2 - $ ~ ~ ) ( 2 r - ~ k k ' + r - ~ & )  
(22) 

(22) E44 = r - 2 ~ 2 k ' 2  + 2r-3s21'k'+ r-4[s2kkr+ (2  - s2)k] + (2  - # ~ ~ ) ( 2 r - ~ k k ' +  ~ - ~ k ~ )  (6.5) 
(22) 

r-'E12 = - 2 ~ c ( r - ~ k k ' + r - ~ k )  
(22) 
E I 4  = 2 r - 4 ~ 2 h "  + 4r-'c2kk'+ r-6(2 -$s2)b2 

1-12;: = 2sc[r-3l .k+r-4(kkr) '+  ,-5kR,] 

(Iq) O r ) ,  
t The ( lq)  x ( lr)  contribution to E& is to mean the part of E& emanating from the combination Fu, x Fur in 

the second of equations (1.  l), Fu, denoting the coefficient of e 
(P)  

in Fur. 
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(23) 

where the non-zero (10) X (13) contributions to Eik are given by 

r”Ez2 = r s E j 3  = E44 = EI4 
(23) -2 -2(23) (23) (23) 

= r - 4 ( 4 c  +1 3c 3 )b+r-5(-;c +4c3)kt+(-6c + 1 0 ~ ~ ) ( ~ - 6 f ’ + ~ - 7 i )  

(23) 
and, finally, where the non-zero ( 1  1) X (12) contributions to Eik are given by 

E l l  = 3 ~ ~ c ( r - ~ k i ’ + 2 r - ~ k i )  

r-2E22=r-4[-2s ck k +( -c  +3c3)k‘K’-$sZcRk”] 

( 2 3 )  

(23) 3 2 1 , ’ Z f  1 2  

+r-’[--3szck’i + (-:c +yc3)ki’ + <-fc + Ly)k&’] 

From the above formulae we can obtain the Galilean components KE of the 
outward flow of linear momentum of radiation from the source in $2 .  (The subscript G 
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refers to Galilean coordinates.) It is fairly obvious from the symmetry of the linear 
source that there is no flux of the x or y component of the momentum, and this can be 
verified by direct calculation (at least as far as the (23) approximation). So attention will 
be confined to the z component K &  

The rate at which linear momentum flows out of a large sphere S ,  centre the origin 
and radius r, is given (in the linear approximation) by 

Transforming from Galilean coordinates (x, y, z ,  t )  to the coordinates (r,  8,4, U )  of the 
Bondi metric and using equation (3.6) we readily find for the rate at which linear 
momentum flows out of an infinite sphere, centre 0, the formula 

(6.9) I d 
- (Kg)  = lim r z  (E" cos 8 -E"r sin 8 )  dS1 dt r+oo 

where 

I f d n " l Z n I n f s i n 8 d 8 d g .  0 0  

Employing equations (4.3), (5.6), (6.1)-(6.7) in equation (6.9) yields 

(6.10) 

(6.11) 

as the total outward flow of momentum of radiation from the linear source. This being 
of order e2u3 leads us to expect terms to appear in the (23) approximation which reveal 
that the linear source itself undergoes a generally permanent variation in momentum in 
the z direction equal and opposite to the momentum specified by the leading, e2u3,  part 
of the expression on the right of equation (6.11). This will be confirmed in the next 
section. 

7. The second approximations. Change of linear momentum of the source in the (23) 
approximation 

Every (2s) approximation is the set of equations (A.6)-(A.12) of appendix 2 with the 
quantities P , 0, . . . , (3 on the right given by 

(2s) ( 2 s )  

(2s )  ( 2 s )  ( 2 s )  ( 2 s )  
P =aE,* Q =arV2Ez2 

( 2 s )  -2 - 2 ( 2 s )  (2s) ( 2 s )  

(2s) (2s  ) (2s) ( 2 s )  ( 2 s )  ( 2 s )  
L =ar- 'Elz M = ( ~ E 1 4  N = ar-IE24 

R =ar s E33 S = ( ~ E 4 4  (7.1) 

in which 

def 
(Y = - 1 6 ~ .  (7.2) 

The corresponding (2s) solution is determined by equations (A. 13)-(A. 16). 
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On insertion of the formulae (6.2)-(6.7), one set at a time, in equations (7.1) and on 
use of equations (A.l3)-(A. 16), the following approximate solutions can eventually be 
found for the linear source in § 2: 

7.1. The (20)  (Nordstrom) solution 
(20)  
D =4rrr-’. (7.3) 

7.4. The (22) solution corresponding to the (1 1) X (1 1) contribution to Eik 

(7.6) 

(7.7) 
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7.6. The (23) solution corresponding to the (1 1) X (12) contribution to Eik 

+F4[(-is +3s3)14  + (a@ - & s 3 ) i k ]  + r-.'(&s - 5 s 3 ) k k }  

with 
def yZf 1-1 k&l du Z =  I-, Y(u)du E = I-, k'&' du. (7.9) 

def 

The solutions (7.3)-(7.5) and (7.7) were found without the use of the five functions 
(A.17) of integration, and these functions were put equal to zero. However for 
obtaining the solutions (7.6) and (7.8) the respective values 

(7.10) 

1 2  
a [(+& -ic 3) y+ (3c - 'jc 3)(_3Ef+ - ;k"ll'- I1 i s k k  f 2 M  ) I  (7.11) 

had to be assigned to the second function x of integration, the other four being ignored. 
This was done to ensure that the solutions (7.6) and (7.8) satisfied the regularity 
conditions for all 8, U and for all r > 0, except for possible gravitational dipole terms 
linear in U representing a recoil of the source off to infinity. 

To ascertain such a recoil, we shall examine in the leading (2s) solutions (7.3)-(7.8) 
non-transient terms of orders r-' and r-2,  i.e. terms of these orders that generally 
undergo permanent changes with u t .  Only the (22) and (23) solutions (7.6) and (7.8) 

t Following the course adopted by Bonnor and Rotenberg (1966) in the purely gravitational case, we proceed 
as far as terms of order r-* because the gravitational dipole terms representing a recoil involve r-': see 
appendix 3. 
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contain terms of this sort involving integrals. Such terms in the (22) solution (7.6) 
represent a change in mass of the source, as shown by Rotenberg (1966), and this does 
not concern us. Picking out the non-transient terms of orders r-l and r -2  from the (23) 
solution (7.8), we obtain 

(23) 
D = a[-$-'cY-&r-'c(2+2E)] (7.12) 

G = a [ r - ' ( - & ~ + & ~ ) Y + & r - ~ s ( Z + 2 E ) ] .  
(23)  

Like all other terms in r- l  and r -2  of the leading (2s) solutions (7.3)-(7.8), the above 
terms vanish for U < u1 (beginning of the motion of the source). However, for U > u2 
(end of the motion) the integral Y, defined by the first of equations (7.9), is a constant, 
and we write 

(U > u2). (7.13) def btktl du I, Y = Y o =  

Consequently, from the second and third of the definitions (7.9), we have for U > u2 

Z + 2 E  =Iu: [Y(w)+2K'(w)k"(w)]dw 
1 2  

[Y(w)+2bt (w)k ' (w)]dw +I" Yo dw 

[ Y ( u )  + 2kt(u)k1(u)] du + Yo(u - u2). 

= I:' U2 

= 

So we get 

where uo is a constant given by 

U2 

uoy0 = - u 2 y o + j  ( y + 2 k 1 k ? d u .  
U1 

(7.14) 

(7.15) 

Inserting equations (7.13) and (7.14) in equations (7.12) we find that, for U > u 2 ,  

(23) (23)  
B = - C =z?ijaY0r-'s2c 

The coordinate transformation 

(7.16) 

r = r * + & j e 2 a 3 a ~ o ~ * 2 ~ *  e = ~ * - & e ~ a ~ a ~ , r * - ' s * ~  
d = 4 *  U = ~ * + & j e ~ a ~ a ~ ~ ( - 3 c * + c * ~ )  

(7.17) 
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with s* !Ef sin 8*,  c* !Zf cos 8* ,  simplifies the solution (7.16) considerably to 

(23) (23) 
D =ayoc[-~r-L1 15r -2 (u+uO)] G =&Y0r-’s(u +uo)  (7.18) 

the asterisks being omitted; the transformation (7.17) does not affect the lower ( 2 s )  
solutions. 

This solution (7.18) (valid for u > u2,  end of the motion of the source) contains the 
gravitational dipole terms -(&aYo)r-’cu and (&aYo)r-2su in D and G , respectively. 
We now readily show that this solution does in fact represent a recoil of the source off to 
infinity. Let us combine the approximate metric corresponding to the solution (7.18) 
with the Schwarzschild metric given by equation (5.3) with e = 0, namely 

(23) (23) 

ds2=  -r2(de2+sin28 d4’)+(1-2mr-l) du2+2  dr du (7.19) 

where m is the mass of the source. Then we obtain 

ds2=  -r2(df3*+sin28 d+’) 

+{1 - 2 m r - 1 + e 2 a 3 a Y o c [ - ~ r - ’ - & r - 2 ( ~  +uo)]}du2 

+2 dr du +heZu3aYor-2s(u +uo)(2r d e  du). (7.20) 

This becomes identical to the Schwarzschild linear-momentum metric (A.2 1) of 
appendix 3 when the linear momentum K is assigned the value 

(7.21) 

by virtue of definitions (7.2) and (7.13). Hence the source will finally (after u = u2)  
move with uniform linear momentum (7.21). This momentum of recoil, which does not 
generally vanish, clearly accounts for the e 2 u 3  contribution of the total outward flow 
(6.11) of linear momentum of electromagnetic radiation. 

Appendix 1. The linearized outgoing wave solution of the electromagnetic potential 

Here we derive the external multipole wave solution (3.7) of the linear approximation 
to equations (3.1). 

In Galilean coordinates (xa,  t ) ,  the potential +i for weak outgoing wave fields may be 
written in the Kirchhoff form 

4i =I V r*-’Ji(Ja, t -r*) dJ l  d i 2  dZ3 q a b J a , b  = 0 (A. 1) 

(Eddington 1924,O 74, Rotenberg 1966) where the integral covers any space volume V 
including the saurce of the field, and r* is the distance of the point (to which the 
space element d J l  dZ2 dJ3 of integration corresponds) from the field point P(x , )  under 
consideration. Expanding the integrand in the first of equations (A. 1) about (Ja, t - r) 
via the Taylor theorem, we have 
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in which 
def 

g = r*-r  

and the superscript ( n )  denotes a"/&". Using the binomial theorem for the expansion of 
g"!r* ( n  = 0, 1 , 2 ,  . . .) in series of ascending powers of i / r  valid in the range r > i=  
OP = we obtain 

g m i n  

r* 1 ,P,(COS e*) -=- 1 1 ° F "  
r r "=Or 

= - 1 ,P, (COS e*) 

i3 
cos2 e* + T ( 2  cos3 e* - COS e*) + o 
i3 

r 

C(fT11 3 

&= r2( -7 cos3 $* +O 
r* ( A . 4 )  

where $* is the angle POP and P, are the Legendre polynomials. Inserting the 
expansions ( A . 4 )  in the expansion ( A . 2 ) ,  employing the formulae 

r'2 = ZSU cos e* = n&/F (nu = x u / r )  ( A . 5 )  
substituting the result in the first of equations ( A . l )  and using equation (3 .2)  and the 
notations (3 .3)  and (3 .5)  finally lead to the multipole wave solution (3.7) for #i. 

Appendix 2. The approximate Einstein-Maxwell equations for the Bondi metric, and 
their solution 

Using the expansions (5.4) and (4 .2)  in the first of equations ( 1 . 1 )  we obtain the (ps) 
approximation, in the coordinates of the Bondi metric (5 .1) ,  as the seven equations 
below (in which RjkEfRik +8+rrEik). To save printing, the symbol (ps ) ,  which should 
have been placed above each capital letter in these equations, has been omitted 
throughout this appendix, except where confusion may result without it. 

2R 0: -4r-'F1 = P 64.6)  
2r-2R;2 = 0: 

+r-2(-B22-3B2cot  8 + 2 B + 2 D + 2 F 2 , - 4 F - 4 G 2 - 2 G  cot e ) =  Q 

B l l  - 2 B 1 4 + 2 r T 1 ( B 1  - B 4 +  D 1  -F1 -G12)  

2r-2s-2R;3=0:  -B11+2B14+2r-'(-B1+B4+D1-F1-G1 cot 0) 
(A.7) 

+r-2(-B22 - 3B2 cot 8 + 2B + 2 0  + 2F2 cot 8 - 4F 

-Dl l  +2F14+2r-'(-Dl-D4+2F4+G24+G4 cot 8 )  

-2G2 - 4 G  cot 6 )  = R (A.@ 

64.9)  

2Rk4 = 0: 

- r - 2 ( ~ 2 2  + 02 cot 6 )  = s 



990 M A  Rotenberg 

2r-'Ri2=0: -Gll+r-1(-B12-2B1 cot 8+F12-2G1)+2r-2(-F2+G) = L 

-Dll + 2F14+r-'(-2D1 + G12+ G1 cot 8) 

(A. 10) 

2Ri4=O: 
+ r-2(-F22-F2 cot 8 + G2+ G cot 8) = M  (A. 1 1) 

2r-'Ri4 = 0: -Gll + G14 +r-'(-BZ4- 2B4 cot 8 -D12+F12 +F24 - 2G1 - G4)= N. 
(A. 12) 

In the above equations a subscript 1,2 or 4 after B, D, F o r  G means differentiation with 
respect to r, 8 or U, respectively; this is to apply to any non-tensorial symbol, unless the 
context implies otherwise. The second of equations (5.1) has been employed, so that C 
is absent from the above equations. The terms linear in gjk and their derivatives appear 

(qr ) 
explicitly on the left of these equations, whereas the terms non-linear in gjk and their 
derivatives, determined from previous approximations, accompany to form the 
quantities P, . . . , N on the right. 

The formal solution of equations (A.6)-(A. 12), which has been derived in papers by 
Bonnor, Hunter and Rotenberg (Bonnor and Rotenberg 1966, Rotenberg 1966, 
Hunter and Rotenberg 1969), is given by 

@r) 

(A. 13) 

+2r-2(1 [ r 2 ( ~ - 2 ~ , , ) + ( ~ , , + ~ , c o t  8)1dr+x(e, u )  (A. 14) 

G = r-l I F2 dr +r-' cosec 8 sin 8 r2(M-2F14) dr +r2D1 +,y de + v(r, U )  cosec 8 I (I 
(A.15) 

B = cosec' 8 I sin' 8( -I [rL + 2r-'(FZ - G)] dr +F2 - G - rG1) d6 

+7(r,  U )  cosec' e+p(e, U )  

in which 
(A. 16) 

are five functions of integration. These arbitrary functions must be chosen to ensure 
that the solution satisfies all the seven equations (A.6)-(A.12), and that it is Galilean at 
spatial infinity and regular everywhere except at 0 and except fer possible gravitational 
dipole terms (proportional to U), which represent a recoil of the source. Special 
precaution must be taken to avoid the solution from being singular in 8 along the polar 
axis 8 = 0. A sufficient condition for the (ps) me'tric to be regular in 8 along the polar 
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axis is that 

B cosec’ 8, C coset' 8, D, F, G cosec 8 be of class Cz near sin 8 = 0. 

All the leading (2s) solutions found in 0 7 meet this condition. 

99 1 

(A. 18) 

Appendix 3. “%e SchwrvzPchild linear-momentum field and the dipole solution 

Here we apply to the Schwarzschild metric 

ds2= -r*2(d8*2+sin2 8* d4*’)+(1-2mr*-’) du*’+2 dr* du* 

the linearized Lorentz transformationt 

(A.19) 

r* = r + uc (r  + u + uo) 

4*=4 
8* = 8 - usr-’(r + u + uo) 

U * = U - uc ( U  + 240) (A.20) 

where U and uo are constants and the relative velocity U is so small that U”, n a 2, may be 
ignored. After some calculation we obtain the ‘Schwarzschild linear-momentum’ 
metric 

dsz = --r2(d8Z+sin’ 8 d~’)+{1-2mr-’-2Kc[3r-’+r-’(u +uo)]} du2 

+2 dr du + 2Kr-’s(u + uo)(2r d8 du) (A.21) 

representing the gravitational field of a central particle of mass m moving the uniform 
linear momentum K = -mu along the polar axis 8 = 0 of the (r, e,+, U )  frame. 

It can be verified that the contribution involving K in the metric (A.21) satisfies the 
linear approximation to the gravitational field equations Rik = 0, namely equations. 
(A.6)-(A. 12) with P, . . . , N on the right equal to zero. This K contribution is referred 
to as the grauitational dipole solution. Like the monopole, Schwarzschild, solution, it 
does not represent gravitational waves. 

A special feature of the gravitational dipole solution is that it diverges linearly with 
U ; more previsely, it involves the ‘gravitational dipole’ terms r-’cu and r-’su. Thus, in 
determining a linear momentum recoil of the electromagnetic source of 0 2, we examine 
the metric as far as terms of order r-’ to seek expressions behaving like these dipole 
terms for U > u2 (end of the motion of the source). 
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